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Password	checking	systems
tom,	password1 tom password1

alice 123456

bob p@ssword!Login	
server

Allow	login	if:

Attack	detection	mechanisms	don’t	flag	request

Sometimes:		second	factor	succeeds

(plus	hundreds	of	millions	more)

Password	matches



Problems	w/	password	checking	systems
tom,	password1 tom password1

alice 123456

bob p@ssword!Login	
server

People	often	enter	
wrong	password:
- Typos
- Memory	errors

Passwords	databases	must	be	protected:
- Server	compromise
- Exfiltration	attacks	(e.g.,	SQL	injection)
Widespread	practice:
- Apply	hashing	w/	salts
- Hope	slows	down	attacks	enough



Today’s	talk

Pythia:	moving	beyond	“hash	&	hope”
Harden	hashes	with	off-system	secret	key	using	
partially	oblivious	pseudorandom	function	protocol

[Everspaugh,	Chatterjee,	Scott,	Juels,	R.	– USENIX	Security	2015]

Typo-tolerant	password	checking
In-depth	study	of	typos	in	user-chosen	passwords
Show	how	to	allow	typos	without	harming	security

[Chatterjee,	Athayle,	Akawhe,	Juels,	R.	– Oakland	2016]
[Woodage,	Chatterjee,	Dodis,	Juels,	R.	– Crypto	2017]

[Chatterjee,	Woodage, Pnueli,	Chowdhury,	R.	– CCS	2017]



Password	checking	systems
tom,	password1 tom password1

alice 123456

bob p@ssword!Login	
server

Websites	should	never store	passwords	directly,	
they	should	be	(at	least)	hashed	with	a	salt	(also	stored)

H …pw||salt H H

c	times	 Cryptographic	hash	function	H
(H	=	SHA-256,	SHA-512,	etc.)

Common	choice	is		c	=	10,000

Better:		scrypt,	argon2

tom salt1 ,	Hc(password1,salt1)

alice salt2 ,	Hc(123456,salt2)

bob salt3 ,	Hc(p@ssword!,salt3)

UNIX	password	hashing	scheme,	PKCS	#5
Formal	analyses:		[Wagner,	Goldberg	2000]	[Bellare,	R.,	Tessaro 2012]



AshleyMadison hack:	36	million	user	hashes
Salts	+	Passwords	hashed	using	bcrypt with	c	=	212	=	4096
4,007	cracked	directly	with	trivial	approach

Password	
cracker

290729	123456
79076	12345
76789	123456789
59462	password
49952	iloveyou
33291	princess	

…

List	of	possible	passwords	in	
order	of	their	likelihood
Recompute hash	and	check

Examples:		Hashcat,	Johntheripper,	academic	projects



AshleyMadison hack:	36	million	user	hashes
Salts	+	Passwords	hashed	using	bcrypt with	c	=	212	=	4096
4,007	cracked	directly	with	trivial	approach

CynoSure analysis:		11	million	hashes	cracked
>630,000	people	used	usernames	as	passwords
MD5	hashes	left	lying	around	accidentally

http://cynosureprime.blogspot.com/2015/09/csp-our-take-on-cracked-am-passwords.html



Password	database	compromises

…
…

32.6	million

#	stolen %	recovered format

100% plaintext	(!)2012

year

117	million 90% Unsalted	SHA-12012

36	million ?? ECB	encryption2013

36	million
Salted	bcrypt
+	MD52015 33%

~500	million ?? bcrypt +	??2014



(1)	Password	protections	often	implemented	
incorrectly	in	practice

(2)	Even	in	best	case,	hashing	slows	down	but		
does	not	prevent	offline	brute-force	cracking



$cur		=	‘password’
$cur		=	md5($cur)
$salt	=	randbytes(20)
$cur		=	hmac_sha1($cur,	$salt)
$cur		=	remote_hmac_sha256($cur,	$secret)
$cur		=	scrypt($cur,	$salt)
$cur		=	hmac_sha256($cur,	$salt)

Facebook	password	onion



h	=	Hc(password1||	salt)
Back-end	
crypto	
service

h

f =	HMAC(K,	h)
K

Store	salt,	f

Back-end	
crypto	
service

f’	=	Hc(123456	||	salt)

f’	=	HMAC(K,	h’) Kf =	f’?

Hc(1234567	||	salt)

Hc(12345	||	salt)

…

Must	still	perform	online	
brute-force	attack

Exfiltration	doesn’t	help

HMAC	is	pseudorandom	function	(PRF).

Strengthening	password	hash	storage
tom,	password1



Strengthening	password	hash	storage

Critical	limitation:		can’t	rotate	K	to	a	new	secret	K’

h	=	Hc(password1||	salt)
Back-end	
crypto	
service

h

f =	HMAC(K,	h)
K

Store	salt,	f

tom,	password1

• Idea	1:	Version	database	and	update	as	users	log	in
§ But	doesn’t	update	old	hashes

• Idea	2:	Invalidate	old	hashes
§ But	requires	password	reset

• Idea	3:	Use	secret-key	encryption	instead	of	PRF
§ But	requires	sending	keys	to	web	server	(or	high	bandwidth)



The	Pythia PRF	Service

h	=	Hc(password1||	salt)
Blind	h,	pick	user	ID
Unblind PRF	output	f
Store	user	ID,	salt,	f

Back-end	
crypto	
service

user	id,	blinded	h

Blinded	PRF	output	f
K

tom,	password1

Combine	token	and	f	
to	generate	f’	=	F(K’,h)

Back-end	
crypto	
service

Token(K->K’)
K

K’Server	learns	nothing	
about	K	or	K’

Cryptographically	erases		f:
Useless	to	attacker	in	the	future

Blinding	means	service	learns	
nothing about	passwords

User	ID	reveals	fine-grained	query	
patterns	to	service.	
Compromise	detection	&	rate	limiting



New	crypto:	partially-oblivious	PRF

h	=	Hc(password1||	salt)
Choose	random	r
f	=	y1/r
Store	user	ID,	salt,	f

user	id,	hr

y

K
tom,	password1

Groups	G1 ,	G2 ,	GT w/			bilinear	pairing	e	:	G1 x	G2 ->	GT e(ax,by)	=	cxy

t =	H(user	id)
y	=	e(tK,hr)

f			=			e(tK,hr)1/r =			e(t,h)Kr*1/r				=				e(t,h)K

• Pairing	cryptographically	binds	user	id	with	password	hash
• Can	add	verifiability	(proof	that	PRF	properly	applied)
• Key	rotation	straightforward:					Token(K	->	K’)		=		K’	/ K
• Interesting	formal	security	analysis	(see	paper)



The	Pythia PRF	Service

Queries	are	fast	despite	pairings
• PRF	query:			11.8	ms (LAN)							96	ms (WAN)

Parallelizable	password	onions	
• Hc and	PRF	query	made	in	parallel	(hides	latency)

Multi-tenant	(theoretically:	scales	to	100	million	login	servers)

Easy	to	deploy
• Open-source	reference	implementation	at

http://pages.cs.wisc.edu/~ace/pythia.html
• At	least	one	startup	deploying	it	commercially

https://virgilsecurity.com/pythia/
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Back	to	our	big	picture
tom,	password1 tom password1

alice 123456

bob p@ssword!Login	
server

People	often	enter	
wrong	password:
- Typos
- Memory	errors

Passwords	databases	must	be	protected:
- Server	compromise
- Exfiltration	attacks	(e.g.,	SQL	injection)
Widespread	practice:
- Apply	hashing	w/	salts
- Hope	slows	down	attacks	enough

tom salt1 ,	GK(salt1 ,	password1)

alice salt2 ,	GK(salt2 ,	123456)

bob salt3 ,	GK(salt3 ,	p@ssword!)



Back	to	our	big	picture
tom,	password1

Login	
server

People	often	enter	
wrong	password:
- Typos
- Memory	errors

Users	have	hard	time	remembering	(complex)	passwords	
[Ur	et	al.	2012]	[Shay	et	al.	2012]	[Mazurek et	al.	2013]	[Shay	et	al.	2014]	
[Bonneau,	Schechter	2014]

Passwords	can	be	difficult	to	enter	without	error	(typo)
[Keith	et	al.	2007,	2009]	 [Shay	et	al.	2012]

Suggestions	for	error-correcting	passphrases
[Bard	2007]	[Jakobsson,	Akavipat 2012]	[Shay	et	al.	2012]

tom salt1 ,	GK(salt1 ,	password1)

alice salt2 ,	GK(salt2 ,	123456)

bob salt3 ,	GK(salt3 ,	p@ssword!)



Back	to	our	big	picture
tom,	password1

Login	
server

People	often	enter	
wrong	password:
- Typos
- Memory	errors

tom salt1 ,	GK(salt1 ,	password1)

alice salt2 ,	GK(salt2 ,	123456)

bob salt3 ,	GK(salt3 ,	p@ssword!)

password1 Password1 PASSWORD1



Typo-tolerant	password	checking:
Allow	registered	password	or	some	typos	of	it

(1)	First	study	of	typo-tolerance	&	simple	constructions	to	correct						
popular	errors		 [Oakland	2016]

(2)	New	constructions	to	correct	more	errors	securely,	show	that			
simple	approaches	are	so	far	the	best																			[Crypto	2017]

(3)	Personalized	typo-tolerance:	have	checking	system	learn	over
time	typos	specific	user	makes																																					[CCS	2017]



Capslock
11%

Flip	first	letter	
case
4.5% Add

character
at	end
4.6%

Other	78.8%

%	OF	TYPOS

100,000+	passwords	typed	by	4,300	workers

Mechanical	Turk	transcription	study

Top	3	account	
for	20%	of	typos



Typo-tolerant	password	checking

Password1

password1

pASSWORD1

Flip	first	letter

Flip	all	letters

Can	view	as	an	error-correction	problem

Ball is	set	of	all	points	we	check	near	a	submitted	string	(including	it)

Success	occurs	if	true	password	is	in	the	ball	of	submitted	passsword

Password

Password12

Password13

Balance	utility	improvement	versus	performance	&	security

Drop	last	char
Easy	to	define	balls	by	generic	
corrector	functions

Ball	size	(b) %	corrected

3 20%

64 50%



Relaxed	checking	via	brute-force	search
tom,	Password1

Compute	ball	for	each	password,	check	each	hash

GK(salt1	,	Password1)
GK(salt1	,	pASSWORD1)
GK(salt1	,	password1)

Works	with	existing	password	hardening	schemes
No	change	in	what	is	stored
Ball	size	b	=	4	gives	20%	of	typos	across	all	users

Can	set	ball	to	be	result	of	applying	
corrector	functions	for	popular	typos

To	finish	checks	in	time	T,	
must	set	Time(GK)	=	T	/	b		
Apply	caps	lock	corrector
Apply	first	case	flip	corrector

tom salt1 ,	GK(salt1 ,	password1)

alice salt2 ,	GK(salt2 ,	123456)

bob salt3 ,	GK(salt3 ,	p@ssword!)



Instrumented	production	login	of	Dropbox	to	quantify	typos
NOTE:We	did	not	admit	login	using	typo’d passwords

24	hour	period:

• 3%	of	all	users failed	to	login	due	to	one	of	top	3	typos

• 20% of	users	who	made	a	typo	would	have	saved	at	least	1	
minute	in	logging	into	Dropbox	if	top	3	typos	are	corrected.

Allowing	typos	in	password	will	add	several	
person-months	of	login	time	every	day.

Impact	of	Top	3	typos	in	real	world



Typo-tolerance	would	significantly	improve	
usability	of	password-based	login

Can	it	be	secure?



Threat	#1:	Server	compromise

If	b	is	small,	then	can	use	existing	GK	
No	change	in	security	after	compromise

No	change	to	
password	DB

tom salt1 ,	GK(salt1 ,	password1)

alice salt2 ,	GK(salt2 ,	123456)

bob salt3 ,	GK(salt3 ,	p@ssword!)



Threat	#2:	Remote	guessing	attacks
tom,	password

GK(salt1	,	password)
GK(salt1	,	PASSWORD)
GK(salt1	,	Password)
GK(salt1	,	passwor)

Apply	caps	lock	corrector
Apply	first	case	flip	corrector
Apply	extra	char	corrector

tom salt1 ,	GK(salt1 ,	password1)

alice salt2 ,	GK(salt2 ,	123456)

bob salt3 ,	GK(salt3 ,	p@ssword!)



Threat	#2:	Remote	guessing	attacks
tom,	password

GK(salt1	,	iloveyou)
GK(salt1	,	ILOVEYOU)
GK(salt1	,	Iloveyou)
GK(salt1	,	iloveyo)

Apply	caps	lock	corrector
Apply	first	case	flip	corrector
Apply	extra	char	corrector

tom,	iloveyou

Server	locks	account	after	q	failed	attempts	(e.g.,	q=10)

…

Up	to	4	passwords	checked	at	cost	of	1	query
=>	

Attack	success	increases	by	4x		

tom salt1 ,	GK(salt1 ,	password1)

alice salt2 ,	GK(salt2 ,	123456)

bob salt3 ,	GK(salt3 ,	p@ssword!)



Threat	#2:	Remote	guessing	attacks
tom,	password

tom,	iloveyou

Server	locks	account	after	q	failed	attempts	(e.g.,	q=10)

…

Adversary	can	get	improvements	only	if	many	popular	passwords	
typo	to	the	same	string

Each	guess	increases	success	
probability	by	sum	of	masses	
of	passwords	in	ball:

password

Password

PASSWORD

passwor

P(password)	+	P(Password)	+	P(passwor)	+	P(PASSWORD)

Won’t	be	4x	increase	since	P(passwor)	<<	P(password)

tom salt1 ,	GK(salt1 ,	password1)

alice salt2 ,	GK(salt2 ,	123456)

bob salt3 ,	GK(salt3 ,	p@ssword!)



Attack	simulation	using	password	leaks

30

Adversary	knows:	
Distribution	of	passwords,		and	the	set	of	correctors
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Exact	checking
Query	most	probable	q	passwords

Typo-tolerant	checking
Query	q	passwords	that	maximizes	success
NP-complete	problem.	
Compute	using	greedy	approximation

Top	3	correctors,	q	=	10



PASSWORDPassword

Don’t check a correction if the resulting 
password is too popular.

pASSWORD pASSWOR

pASSWORD

Security-sensitive	typo	tolerance



Checkers	w/	heuristic	filtering

32

Use	password	leak	rockyou to	estimate	password	distribution
Filter	out	typos	to	ensure	aggregate	ball	weight	not	too	large
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Typo-tolerance	can	enhance	user	experience	
without	degrading	security in	practice

Relaxed	checking	(brute-force	ball	search):	
• Works	with	existing	password	hardening	schemes
• No	change	in	what	is	stored
• Ball	size	b	=	4	gives	20%	of	typos	across	all	users

Outstanding	questions:
• Can	we	increase	%	of	typos	correctable?
• What	about	users	with	rare	typos?



New	Approach	1:	
Popularity-proportional	hashing
We	can	increase	ball	size	for	relaxed	checking	but	will	have	to	
decrease	run	time	of	GK
Decreasing	run	time	by	10	
=>		10x	speedup	in	offline	attacks

Password1

password1

pASSWORD1

Password

Password12

Password13

Popularity	proportional	hashing:
Hash	time	inversely	proportional	to	
strength	of	password

P(pw)	high	=>	hash	time	longer
P(pw)	low		=>	hash	time	faster

Ball	size	(b) %	corrected

3 20%

64 50%

~	200	*	|pw| 79%

Aggregate	time	to	check	all	points	in	a	ball	is	
lower	if	some	low-entropy	passwords	in	ball



Another	possible	approach:	use	secure	sketches [Dodis,	Smith	2005]
Pair	of	algorithms	(SS,Rec):

s	<- SS(pw)

pw’’	<- Rec(pw’,s)

Pr[pw’’	=	pw]	>	1	- 𝛿
if	pw’	in	ball	of	pw

Password1

password1

pASSWORD1

Password

Password12

Password13

Ball	size	(b) %	corrected

3 20%

64 50%

~	200	*	|pw| 79%

Store	s	with	GK(pw)

New	Approach	2:	
Secure-sketch-based	checking

To	check	submission	pw’:
If	GK(pw’)	=	GK(pw)	then	allow	login
pw’’	<- Rec(pw’,s)
If	GK(pw’’)	=	GK(pw)	then	allow	login

Allowed	error
(e.g.,	𝛿 =	5%)



Building	suitable	secure	sketches

Distribution-sensitive	secure	sketches	can	provide	better	security
• Sketch	algorithms	designed	for	particular	distribution
• Security	only	must	hold	for	that	distribution

[Fuller,	Rezyin,	Smith	2016]	give	construction	using	“layering”

We	provide	improved	version	of	their	construction,	
layer-hiding	hash

Best	known	security,	efficiency	trade-off

Traditional	secure	sketches	(e.g.,	[Dodis,	Smith	2005])	not	secure	
enough	(leak	too	much	about	password)



For	typical	password	distributions,	
relaxed	checking	is	better	than	PPH

Comparing	the	approaches

Relaxed	
checking

Popularity-
proportional	
hashing

Secure-
sketch	
checking

Fix	errors	corrected	&	run	time	of	checking.	Which	offers	best	security?

Lower-bound	security	of	secure-sketch	
approach	by	PPH

PPH	always	better	trade-off	than	best-
known	secure-sketch	(layer-hiding	hash)



Relaxed	checking	remains	best	known	approach

Outstanding	questions:
• Can	we	increase	%	of	typos	correctable?
• What	about	users	with	rare	typos?

Conjecture:	
Relaxed	checking	is	best	possible	approach	in	this	setting



tom salt1 ,		GK(salt1 ,	password1)

Typo	
cache:

Wait	list:

Personalized	typo-tolerant	checking
Another	approach:	learn	typos	individual	user	makes	over	time

tom,	Password1

Check	GK(salt1 ,	Password1)	,	see	that	it	is	wrong
Add	to	a	wait	list	of	recent	incorrect	submissions

When	user	correctly	logs	in:
• Check	wait	list,	apply	typo	policy	(e.g.,	edit	distance	1	of	true	password)
• Add	valid	typos	from	wait	list	into	cache	and	clear	wait	list	

Check	GK(salt1 ,	Password1)		and			GK(salt2 ,	Password1),	allow	login	if	either	match

tom,	ihatetypos

tom,	password1

tom,	Password1 Password1 ihatetypos

salt2 ,		GK(salt2 ,	Password1)



Personalized	typo-tolerant	checking
Another	approach:	learn	typos	individual	user	makes	over	time

tom,	Password1

tom salt1 ,		GK(salt1 ,	password1)

Typo	
cache

Wait	list:

Obviously	can’t	store	wait	list	in	clear,	security	problem
Encrypt	wait	list	using	public	key	encryption
• Encrypt	secret	key	at	registration	time	using	password1
• Encrypt	secret	key	under	each	typo	added	to	typo	cache

tom,	ihatetypos

tom,	password1

tom,	Password1

pk ,	Epassword1(sk)	,	EPassword1(sk)

salt2 ,		GK(salt2 ,	Password1)

ihatetyposPassword1Epk(Password1) Epk(ihatetypos)

Lots	more	details	of	design:
Randomizing	order	of	typo	cache,	cache	eviction	policies,	etc.



Personalized	typo-tolerant	checking
Another	approach:	learn	typos	individual	user	makes	over	time

tom,	Password1

tom salt1 ,		GK(salt1 ,	password1)

Typo	
cache

Wait	list:

Security:	 we	prove	that	for	realistic	password/typo	distributions,	an	attacker	that	
compromises	system	cannot	do	better	than	classic	brute-force	attack	against	
GK(salt1 ,	password1)

tom,	ihatetypos

tom,	password1

tom,	Password1

salt2 ,		GK(salt2 ,	Password1)

Epk(Password1) Epk(ihatetypos)

No	security	loss	by	adding	typo	cache

pk ,	Epassword1(sk)	,	EPassword1(sk)



• Mechanical	turk studies	showed	
personalization	can	be	beneficial
– 45%	of	users	would	benefit

• We	built	a	prototype	called	TypTop.	
–Mac	OSX	and	Linux	password	checking
– Pilot	deployment	with	~25	users
– Some	users	get	huge	benefit	from	TypTop

• Available	at	https://typtop.info

TypTop:	prototype	adaptive	checker
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