
Making	Password	Checking	
Systems	Better

Tom	Ristenpart

Covering	joint	work	with:
Anish	Athayle,	Devdatta Akawhe,	Joseph	Bonneau,	Rahul	Chatterjee,		
Anusha Chowdhury,	Yevgeniy Dodis,	Adam	Everspaugh,	Ari	Juels,	
Yuval	Pnueli,	Sam	Scott,	Joanne	Woodage

Password	checking	systems
tom,	password1 tom password1

alice 123456

bob p@ssword!Login	
server

Allow	login	if:

Attack	detection	mechanisms	don’t	flag	request

Sometimes:		second	factor	succeeds

(plus	hundreds	of	millions	more)

Password	matches

Problems	w/	password	checking	systems
tom,	password1 tom password1

alice 123456

bob p@ssword!Login	
server

People	often	enter	
wrong	password:
- Typos
- Memory	errors

Passwords	databases	must	be	protected:
- Server	compromise
- Exfiltration	attacks	(e.g.,	SQL	injection)
Widespread	practice:
- Apply	hashing	w/	salts
- Hope	slows	down	attacks	enough

Today’s	talk

Pythia:	moving	beyond	“hash	&	hope”
Harden	hashes	with	off-system	secret	key	using	
partially	oblivious	pseudorandom	function	protocol

[Everspaugh,	Chatterjee,	Scott,	Juels,	R.	– USENIX	Security	2015]

Typo-tolerant	password	checking
In-depth	study	of	typos	in	user-chosen	passwords
Show	how	to	allow	typos	without	harming	security

[Chatterjee,	Athayle,	Akawhe,	Juels,	R.	– Oakland	2016]
[Woodage,	Chatterjee,	Dodis,	Juels,	R.	– Crypto	2017]

[Chatterjee,	Woodage, Pnueli,	Chowdhury,	R.	– CCS	2017]

Password	checking	systems
tom,	password1 tom password1

alice 123456

bob p@ssword!Login	
server

Websites	should	never store	passwords	directly,	
they	should	be	(at	least)	hashed	with	a	salt	(also	stored)

H …pw||salt H H

c	times	 Cryptographic	hash	function	H
(H	=	SHA-256,	SHA-512,	etc.)

Common	choice	is		c	=	10,000

Better:		scrypt,	argon2

tom salt1 ,	Hc(password1,salt1)

alice salt2 ,	Hc(123456,salt2)

bob salt3 ,	Hc(p@ssword!,salt3)

UNIX	password	hashing	scheme,	PKCS	#5
Formal	analyses:		[Wagner,	Goldberg	2000]	[Bellare,	R.,	Tessaro 2012]

AshleyMadison hack:	36	million	user	hashes
Salts	+	Passwords	hashed	using	bcrypt with	c	=	212	=	4096
4,007	cracked	directly	with	trivial	approach

Password	
cracker

290729	123456
79076	12345
76789	123456789
59462	password
49952	iloveyou
33291	princess	

…

List	of	possible	passwords	in	
order	of	their	likelihood
Recompute hash	and	check

Examples:		Hashcat,	Johntheripper,	academic	projects

AshleyMadison hack:	36	million	user	hashes
Salts	+	Passwords	hashed	using	bcrypt with	c	=	212	=	4096
4,007	cracked	directly	with	trivial	approach

CynoSure analysis:		11	million	hashes	cracked
>630,000	people	used	usernames	as	passwords
MD5	hashes	left	lying	around	accidentally

http://cynosureprime.blogspot.com/2015/09/csp-our-take-on-cracked-am-passwords.html

Password	database	compromises

…
…

32.6	million

#	stolen %	recovered format

100% plaintext	(!)2012

year

117	million 90% Unsalted	SHA-12012

36	million ?? ECB	encryption2013

36	million
Salted	bcrypt
+	MD52015 33%

~500	million ?? bcrypt +	??2014

(1)	Password	protections	often	implemented	
incorrectly	in	practice

(2)	Even	in	best	case,	hashing	slows	down	but		
does	not	prevent	offline	brute-force	cracking

$cur		=	‘password’
$cur		=	md5($cur)
$salt	=	randbytes(20)
$cur		=	hmac_sha1($cur,	$salt)
$cur		=	remote_hmac_sha256($cur,	$secret)
$cur		=	scrypt($cur,	$salt)
$cur		=	hmac_sha256($cur,	$salt)

Facebook	password	onion

h	=	Hc(password1||	salt)
Back-end	
crypto	
service

h

f =	HMAC(K,	h)
K

Store	salt,	f

Back-end	
crypto	
service

f’	=	Hc(123456	||	salt)

f’	=	HMAC(K,	h’) Kf =	f’?

Hc(1234567	||	salt)

Hc(12345	||	salt)

…

Must	still	perform	online	
brute-force	attack

Exfiltration	doesn’t	help

HMAC	is	pseudorandom	function	(PRF).

Strengthening	password	hash	storage
tom,	password1

Strengthening	password	hash	storage

Critical	limitation:		can’t	rotate	K	to	a	new	secret	K’

h	=	Hc(password1||	salt)
Back-end	
crypto	
service

h

f =	HMAC(K,	h)
K

Store	salt,	f

tom,	password1

• Idea	1:	Version	database	and	update	as	users	log	in
§ But	doesn’t	update	old	hashes

• Idea	2:	Invalidate	old	hashes
§ But	requires	password	reset

• Idea	3:	Use	secret-key	encryption	instead	of	PRF
§ But	requires	sending	keys	to	web	server	(or	high	bandwidth)

The	Pythia PRF	Service

h	=	Hc(password1||	salt)
Blind	h,	pick	user	ID
Unblind PRF	output	f
Store	user	ID,	salt,	f

Back-end	
crypto	
service

user	id,	blinded	h

Blinded	PRF	output	f
K

tom,	password1

Combine	token	and	f	
to	generate	f’	=	F(K’,h)

Back-end	
crypto	
service

Token(K->K’)
K

K’Server	learns	nothing	
about	K	or	K’

Cryptographically	erases		f:
Useless	to	attacker	in	the	future

Blinding	means	service	learns	
nothing about	passwords

User	ID	reveals	fine-grained	query	
patterns	to	service.	
Compromise	detection	&	rate	limiting

New	crypto:	partially-oblivious	PRF

h	=	Hc(password1||	salt)
Choose	random	r
f	=	y1/r
Store	user	ID,	salt,	f

user	id,	hr

y

K
tom,	password1

Groups	G1 ,	G2 ,	GT w/			bilinear	pairing	e	:	G1 x	G2 ->	GT e(ax,by)	=	cxy

t =	H(user	id)
y	=	e(tK,hr)

f			=			e(tK,hr)1/r =			e(t,h)Kr*1/r				=				e(t,h)K

• Pairing	cryptographically	binds	user	id	with	password	hash
• Can	add	verifiability	(proof	that	PRF	properly	applied)
• Key	rotation	straightforward:					Token(K	->	K’)		=		K’	/ K
• Interesting	formal	security	analysis	(see	paper)

The	Pythia PRF	Service

Queries	are	fast	despite	pairings
• PRF	query:			11.8	ms (LAN)							96	ms (WAN)

Parallelizable	password	onions	
• Hc and	PRF	query	made	in	parallel	(hides	latency)

Multi-tenant	(theoretically:	scales	to	100	million	login	servers)

Easy	to	deploy
• Open-source	reference	implementation	at

http://pages.cs.wisc.edu/~ace/pythia.html
• At	least	one	startup	deploying	it	commercially

https://virgilsecurity.com/pythia/

Today’s	talk

Pythia:	moving	beyond	“hash	&	hope”
Harden	hashes	with	off-system	secret	key	using	
partially	oblivious	pseudorandom	function	protocol

[Everspaugh,	Chatterjee,	Scott,	Juels,	R.	– USENIX	Security	2015]

Typo-tolerant	password	checking
In-depth	study	of	typos	in	user-chosen	passwords
Show	how	to	allow	typos	without	harming	security

[Chatterjee,	Athayle,	Akawhe,	Juels,	R.	– Oakland	2016]
[Woodage,	Chatterjee,	Dodis,	Juels,	R.	– Crypto	2017]

[Chatterjee,	Woodage, Pnueli,	Chowdhury,	R.	– CCS	2017]

Back	to	our	big	picture
tom,	password1 tom password1

alice 123456

bob p@ssword!Login	
server

People	often	enter	
wrong	password:
- Typos
- Memory	errors

Passwords	databases	must	be	protected:
- Server	compromise
- Exfiltration	attacks	(e.g.,	SQL	injection)
Widespread	practice:
- Apply	hashing	w/	salts
- Hope	slows	down	attacks	enough

tom salt1 ,	GK(salt1 ,	password1)

alice salt2 ,	GK(salt2 ,	123456)

bob salt3 ,	GK(salt3 ,	p@ssword!)

Back	to	our	big	picture
tom,	password1

Login	
server

People	often	enter	
wrong	password:
- Typos
- Memory	errors

Users	have	hard	time	remembering	(complex)	passwords	
[Ur	et	al.	2012]	[Shay	et	al.	2012]	[Mazurek et	al.	2013]	[Shay	et	al.	2014]	
[Bonneau,	Schechter	2014]

Passwords	can	be	difficult	to	enter	without	error	(typo)
[Keith	et	al.	2007,	2009]	 [Shay	et	al.	2012]

Suggestions	for	error-correcting	passphrases
[Bard	2007]	[Jakobsson,	Akavipat 2012]	[Shay	et	al.	2012]

tom salt1 ,	GK(salt1 ,	password1)

alice salt2 ,	GK(salt2 ,	123456)

bob salt3 ,	GK(salt3 ,	p@ssword!)

Back	to	our	big	picture
tom,	password1

Login	
server

People	often	enter	
wrong	password:
- Typos
- Memory	errors

tom salt1 ,	GK(salt1 ,	password1)

alice salt2 ,	GK(salt2 ,	123456)

bob salt3 ,	GK(salt3 ,	p@ssword!)

password1 Password1 PASSWORD1

Typo-tolerant	password	checking:
Allow	registered	password	or	some	typos	of	it

(1)	First	study	of	typo-tolerance	&	simple	constructions	to	correct						
popular	errors		 [Oakland	2016]

(2)	New	constructions	to	correct	more	errors	securely,	show	that			
simple	approaches	are	so	far	the	best																			[Crypto	2017]

(3)	Personalized	typo-tolerance:	have	checking	system	learn	over
time	typos	specific	user	makes																																					[CCS	2017]

Capslock
11%

Flip	first	letter	
case
4.5% Add

character
at	end
4.6%

Other	78.8%

%	OF	TYPOS

100,000+	passwords	typed	by	4,300	workers

Mechanical	Turk	transcription	study

Top	3	account	
for	20%	of	typos

Typo-tolerant	password	checking

Password1

password1

pASSWORD1

Flip	first	letter

Flip	all	letters

Can	view	as	an	error-correction	problem

Ball is	set	of	all	points	we	check	near	a	submitted	string	(including	it)

Success	occurs	if	true	password	is	in	the	ball	of	submitted	passsword

Password

Password12

Password13

Balance	utility	improvement	versus	performance	&	security

Drop	last	char
Easy	to	define	balls	by	generic	
corrector	functions

Ball	size	(b) %	corrected

3 20%

64 50%

Relaxed	checking	via	brute-force	search
tom,	Password1

Compute	ball	for	each	password,	check	each	hash

GK(salt1	,	Password1)
GK(salt1	,	pASSWORD1)
GK(salt1	,	password1)

Works	with	existing	password	hardening	schemes
No	change	in	what	is	stored
Ball	size	b	=	4	gives	20%	of	typos	across	all	users

Can	set	ball	to	be	result	of	applying	
corrector	functions	for	popular	typos

To	finish	checks	in	time	T,	
must	set	Time(GK)	=	T	/	b		
Apply	caps	lock	corrector
Apply	first	case	flip	corrector

tom salt1 ,	GK(salt1 ,	password1)

alice salt2 ,	GK(salt2 ,	123456)

bob salt3 ,	GK(salt3 ,	p@ssword!)

Instrumented	production	login	of	Dropbox	to	quantify	typos
NOTE:We	did	not	admit	login	using	typo’d passwords

24	hour	period:

• 3%	of	all	users failed	to	login	due	to	one	of	top	3	typos

• 20% of	users	who	made	a	typo	would	have	saved	at	least	1	
minute	in	logging	into	Dropbox	if	top	3	typos	are	corrected.

Allowing	typos	in	password	will	add	several	
person-months	of	login	time	every	day.

Impact	of	Top	3	typos	in	real	world

Typo-tolerance	would	significantly	improve	
usability	of	password-based	login

Can	it	be	secure?

Threat	#1:	Server	compromise

If	b	is	small,	then	can	use	existing	GK	
No	change	in	security	after	compromise

No	change	to	
password	DB

tom salt1 ,	GK(salt1 ,	password1)

alice salt2 ,	GK(salt2 ,	123456)

bob salt3 ,	GK(salt3 ,	p@ssword!)

Threat	#2:	Remote	guessing	attacks
tom,	password

GK(salt1	,	password)
GK(salt1	,	PASSWORD)
GK(salt1	,	Password)
GK(salt1	,	passwor)

Apply	caps	lock	corrector
Apply	first	case	flip	corrector
Apply	extra	char	corrector

tom salt1 ,	GK(salt1 ,	password1)

alice salt2 ,	GK(salt2 ,	123456)

bob salt3 ,	GK(salt3 ,	p@ssword!)

Threat	#2:	Remote	guessing	attacks
tom,	password

GK(salt1	,	iloveyou)
GK(salt1	,	ILOVEYOU)
GK(salt1	,	Iloveyou)
GK(salt1	,	iloveyo)

Apply	caps	lock	corrector
Apply	first	case	flip	corrector
Apply	extra	char	corrector

tom,	iloveyou

Server	locks	account	after	q	failed	attempts	(e.g.,	q=10)

…

Up	to	4	passwords	checked	at	cost	of	1	query
=>	

Attack	success	increases	by	4x		

tom salt1 ,	GK(salt1 ,	password1)

alice salt2 ,	GK(salt2 ,	123456)

bob salt3 ,	GK(salt3 ,	p@ssword!)

Threat	#2:	Remote	guessing	attacks
tom,	password

tom,	iloveyou

Server	locks	account	after	q	failed	attempts	(e.g.,	q=10)

…

Adversary	can	get	improvements	only	if	many	popular	passwords	
typo	to	the	same	string

Each	guess	increases	success	
probability	by	sum	of	masses	
of	passwords	in	ball:

password

Password

PASSWORD

passwor

P(password)	+	P(Password)	+	P(passwor)	+	P(PASSWORD)

Won’t	be	4x	increase	since	P(passwor)	<<	P(password)

tom salt1 ,	GK(salt1 ,	password1)

alice salt2 ,	GK(salt2 ,	123456)

bob salt3 ,	GK(salt3 ,	p@ssword!)

Attack	simulation	using	password	leaks

30

Adversary	knows:	
Distribution	of	passwords,		and	the	set	of	correctors

2.75

0.79

2.94

0.96

0

1

2

3

4

phpbb myspace

Su
cc
es
s	p

ro
ba
bi
lit
y	
(%

) Exact	checking
Typo-tolerant	checking

Exact	checking
Query	most	probable	q	passwords

Typo-tolerant	checking
Query	q	passwords	that	maximizes	success
NP-complete	problem.	
Compute	using	greedy	approximation

Top	3	correctors,	q	=	10

PASSWORDPassword

Don’t check a correction if the resulting
password is too popular.

pASSWORD pASSWOR

pASSWORD

Security-sensitive	typo	tolerance

Checkers	w/	heuristic	filtering

32

Use	password	leak	rockyou to	estimate	password	distribution
Filter	out	typos	to	ensure	aggregate	ball	weight	not	too	large

2.75

0.79

2.94

0.96

2.77

0.81

0

0.5

1

1.5

2

2.5

3

3.5

phpbb myspace

Su
cc
es
s	p

ro
ba
bi
lit
y	
(%

)

Exact	checking

Typo-tolerant	checking

Typo-tolerant	checking	
w/	filtering

Top	3	correctors,	q	=	10

Typo-tolerance	can	enhance	user	experience	
without	degrading	security in	practice

Relaxed	checking	(brute-force	ball	search):	
• Works	with	existing	password	hardening	schemes
• No	change	in	what	is	stored
• Ball	size	b	=	4	gives	20%	of	typos	across	all	users

Outstanding	questions:
• Can	we	increase	%	of	typos	correctable?
• What	about	users	with	rare	typos?

New	Approach	1:	
Popularity-proportional	hashing
We	can	increase	ball	size	for	relaxed	checking	but	will	have	to	
decrease	run	time	of	GK
Decreasing	run	time	by	10	
=>		10x	speedup	in	offline	attacks

Password1

password1

pASSWORD1

Password

Password12

Password13

Popularity	proportional	hashing:
Hash	time	inversely	proportional	to	
strength	of	password

P(pw)	high	=>	hash	time	longer
P(pw)	low		=>	hash	time	faster

Ball	size	(b) %	corrected

3 20%

64 50%

~	200	*	|pw| 79%

Aggregate	time	to	check	all	points	in	a	ball	is	
lower	if	some	low-entropy	passwords	in	ball

Another	possible	approach:	use	secure	sketches [Dodis,	Smith	2005]
Pair	of	algorithms	(SS,Rec):

s	<- SS(pw)

pw’’	<- Rec(pw’,s)

Pr[pw’’	=	pw]	>	1	- 𝛿
if	pw’	in	ball	of	pw

Password1

password1

pASSWORD1

Password

Password12

Password13

Ball	size	(b) %	corrected

3 20%

64 50%

~	200	*	|pw| 79%

Store	s	with	GK(pw)

New	Approach	2:	
Secure-sketch-based	checking

To	check	submission	pw’:
If	GK(pw’)	=	GK(pw)	then	allow	login
pw’’	<- Rec(pw’,s)
If	GK(pw’’)	=	GK(pw)	then	allow	login

Allowed	error
(e.g.,	𝛿 =	5%)

Building	suitable	secure	sketches

Distribution-sensitive	secure	sketches	can	provide	better	security
• Sketch	algorithms	designed	for	particular	distribution
• Security	only	must	hold	for	that	distribution

[Fuller,	Rezyin,	Smith	2016]	give	construction	using	“layering”

We	provide	improved	version	of	their	construction,	
layer-hiding	hash

Best	known	security,	efficiency	trade-off

Traditional	secure	sketches	(e.g.,	[Dodis,	Smith	2005])	not	secure	
enough	(leak	too	much	about	password)

For	typical	password	distributions,	
relaxed	checking	is	better	than	PPH

Comparing	the	approaches

Relaxed	
checking

Popularity-
proportional	
hashing

Secure-
sketch	
checking

Fix	errors	corrected	&	run	time	of	checking.	Which	offers	best	security?

Lower-bound	security	of	secure-sketch	
approach	by	PPH

PPH	always	better	trade-off	than	best-
known	secure-sketch	(layer-hiding	hash)

Relaxed	checking	remains	best	known	approach

Outstanding	questions:
• Can	we	increase	%	of	typos	correctable?
• What	about	users	with	rare	typos?

Conjecture:	
Relaxed	checking	is	best	possible	approach	in	this	setting

tom salt1 ,		GK(salt1 ,	password1)

Typo	
cache:

Wait	list:

Personalized	typo-tolerant	checking
Another	approach:	learn	typos	individual	user	makes	over	time

tom,	Password1

Check	GK(salt1 ,	Password1)	,	see	that	it	is	wrong
Add	to	a	wait	list	of	recent	incorrect	submissions

When	user	correctly	logs	in:
• Check	wait	list,	apply	typo	policy	(e.g.,	edit	distance	1	of	true	password)
• Add	valid	typos	from	wait	list	into	cache	and	clear	wait	list	

Check	GK(salt1 ,	Password1)		and			GK(salt2 ,	Password1),	allow	login	if	either	match

tom,	ihatetypos

tom,	password1

tom,	Password1 Password1 ihatetypos

salt2 ,		GK(salt2 ,	Password1)

Personalized	typo-tolerant	checking
Another	approach:	learn	typos	individual	user	makes	over	time

tom,	Password1

tom salt1 ,		GK(salt1 ,	password1)

Typo	
cache

Wait	list:

Obviously	can’t	store	wait	list	in	clear,	security	problem
Encrypt	wait	list	using	public	key	encryption
• Encrypt	secret	key	at	registration	time	using	password1
• Encrypt	secret	key	under	each	typo	added	to	typo	cache

tom,	ihatetypos

tom,	password1

tom,	Password1

pk ,	Epassword1(sk)	,	EPassword1(sk)

salt2 ,		GK(salt2 ,	Password1)

ihatetyposPassword1Epk(Password1) Epk(ihatetypos)

Lots	more	details	of	design:
Randomizing	order	of	typo	cache,	cache	eviction	policies,	etc.

Personalized	typo-tolerant	checking
Another	approach:	learn	typos	individual	user	makes	over	time

tom,	Password1

tom salt1 ,		GK(salt1 ,	password1)

Typo	
cache

Wait	list:

Security:	 we	prove	that	for	realistic	password/typo	distributions,	an	attacker	that	
compromises	system	cannot	do	better	than	classic	brute-force	attack	against	
GK(salt1 ,	password1)

tom,	ihatetypos

tom,	password1

tom,	Password1

salt2 ,		GK(salt2 ,	Password1)

Epk(Password1) Epk(ihatetypos)

No	security	loss	by	adding	typo	cache

pk ,	Epassword1(sk)	,	EPassword1(sk)

• Mechanical	turk studies	showed	
personalization	can	be	beneficial
– 45%	of	users	would	benefit

• We	built	a	prototype	called	TypTop.	
–Mac	OSX	and	Linux	password	checking
– Pilot	deployment	with	~25	users
– Some	users	get	huge	benefit	from	TypTop

• Available	at	https://typtop.info

TypTop:	prototype	adaptive	checker

Today’s	talk

Pythia:	moving	beyond	“hash	&	hope”
Harden	hashes	with	off-system	secret	key	using	
partially	oblivious	pseudorandom	function	protocol

[Everspaugh,	Chatterjee,	Scott,	Juels,	R.	– USENIX	Security	2015]

Typo-tolerant	password	checking
In-depth	study	of	typos	in	user-chosen	passwords
Show	how	to	allow	typos	without	harming	security

[Chatterjee,	Athayle,	Akawhe,	Juels,	R.	– Oakland	2016]
[Woodage,	Chatterjee,	Dodis,	Juels,	R.	– Crypto	2017]

[Chatterjee,	Woodage, Pnueli,	Chowdhury,	R.	– CCS	2017]

