Making Password Checking
Systems Better

=5t CORNELL
> TECH

Tom Ristenpart

Covering joint work with:
Anish Athayle, Devdatta Akawhe, Joseph Bonneau, Rahul Chatterjee,

Anusha Chowdhury, Yevgeniy Dodis, Adam Everspaugh, Ari Juels,
Yuval Pnueli, Sam Scott, Joanne Woodage

Password checking systems

tom passwordl

tom, passwordl

6\) L alice | 123456
(@\4\
|
Login bob p@ssword!
SErver (plus hundreds of millions more)

Allow login if:

Password matches
Attack detection mechanisms don’t flag request

Sometimes: second factor succeeds

Problems w/ password checking systems

tom passwordl

6&)) alice | 123456

|
o bob p@ssword!
server /

tom, passwordl

People often enter

wrong password:
- Typos Passwords databases must be protected:

- Memory errors - Server compromise

- Exfiltration attacks (e.g., SQL injection)
Widespread practice:

- Apply hashing w/ salts

- Hope slows down attacks enough

Today’s talk

Pythia: moving beyond “hash & hope”

Harden hashes with off-system secret key using
partially oblivious pseudorandom function protocol

[Everspaugh, Chatterjee, Scott, Juels, R. — USENIX Security 2015]

Typo-tolerant password checking

In-depth study of typos in user-chosen passwords

Show how to allow typos without harming security

[Chatterjee, Athayle, Akawhe, Juels, R. — Oakland 2016]
[Woodage, Chatterjee, Dodis, Juels, R. — Crypto 2017]
[Chatterjee, Woodage, Pnueli, Chowdhury, R. — CCS 2017]

Password checking systems

~
ﬁ@i — tom, password1 \ salt; , H(password1,salt,)
Wi
\:@{g!z salt, , H¢(123456,salt,)
i . '
Login salt; , Hé(p@ssword!,salt,)

server

Websites should never store passwords directly,
they should be (at least) hashed with a salt (also stored)

c times Cryptographic hash function H
AL (H = SHA-256, SHA-512, etc.)

r N
Common choice is ¢ =10,000
pw| |salt
Better: scrypt, argon2
UNIX password hashing scheme, PKCS #5
Formal analyses: [Wagner, Goldberg 2000] [Bellare, R., Tessaro 2012]

AshleyMadison hack: 36 million user hashes

ASHLEY

MADIS# N*

Salts + Passwords hashed using bcrypt with ¢ = 212= 4096
4,007 cracked directly with trivial approach

290729 123456
79076 12345
76789 123456789
59462 password
49952 iloveyou
33291 princess

p

-

\

Password
cracker

/

-

List of possible passwords in
order of their likelihood
Recompute hash and check

Examples: Hashcat, Johntheripper, academic projects

ASHLEY
MADIS#N°

AshleyMadison hack: 36 million user hashes
Salts + Passwords hashed using bcrypt with ¢ = 212= 4096
4,007 cracked directly with trivial approach

CynoSure analysis: 11 million hashes cracked
>630,000 people used usernames as passwords
MD5 hashes left lying around accidentally

http://cynosureprime.blogspot.com/2015/09/csp-our-take-on-cracked-am-passwords.html

Password database compromises

year

rockyou ==
Linked [[]] 2012

f\\Adobe® ==
YAHOO-’ 2014

ASHLEY
MADIS=N°"| 205

Life is short. Have an affair.®

stolen

32.6 million

117 million

36 million

~500 million

36 million

% recovered

100%

90%

?7?

?7?

33%

format

plaintext (!)

Unsalted SHA-1

ECB encryption

bcrypt + ?7?

Salted bcrypt
+ MD5

(1) Password protections often implemented
incorrectly in practice

(2) Even in best case, hashing slows down but
does not prevent offline brute-force cracking

Facebook password onion

Scur = ‘password’ n

Scur = md5(Scur)

Ssalt = randbytes(20)

Scur = hmac_shal(Scur, Ssalt)

Scur =remote _hmac_sha256(Scur, Ssecret)
Scur = scrypt(Scur, Ssalt)

Scur = hmac_sha256(Scur, Ssalt)

Strengthening password hash storage

GE\) ~ tom, passwordl | h R

((44\ 2 3 K
f = HMAC(K, h
(K, h) Back—end
= He(password1| | salt) crypto
service

Store salt, f

HMAC is pseudorandom function (PRF). }

f’ = H(123456 || salt)

>
<€ .
£ = HMAC(K, h’)).k
Back—end
. . H¢(1234567 || salt
Must still perform online (I)> crypto
brute-force attack < service
H¢(12345 || salt)
>
<€

Exfiltration doesn’t help

Strengthening password hash storage

§ tom, passwordl | h -
\K) > O
<€ l“" K
f = HMAC(K, h) Back-end
h = H¢(password1| | salt) crypto

service
Store salt, f

Critical limitation: can’t rotate K to a new secret K’

* Idea 1: Version database and update as users log in
= But doesn’t update old hashes

 |dea 2: Invalidate old hashes
= But requires password reset

* |dea 3: Use secret-key encryption instead of PRF
= But requires sending keys to web server (or high bandwidth)

The Pythia PRF Se rvice Blinding means service learns
nothing about passwords
o

¥ — tom, passwordl |
®, .

user id, blinded h

>

(B~ < ;\K
Blinded PRF output f Back—encr
h = H(password1| | salt) crypto
Blind h, pick user ID service
Unblind PRF output f User ID reveals fine-grained query
Store user ID, salt, f patterns to service.

Compromise detection & rate limiting
Cryptographically erases f:
Useless to attacker in the future

Combine token and f
to generate f’ = F(K’,h)

<€

Token(K->K’) Back—en%

Server learns nothing Cryp_to fK
’ service
about K or K

New crypto: partially-oblivious PRF

Groups G, , G, , Gy w/ bilinear pairinge : G;xG,->G; e(axbY)=c¥

/K
% - tom, passwordl | user id, h" (-
\\> > (D
«m\ < U234
Y t = H(user id)

h = H¢(password1| | salt) y = e(t&,h")

Choose random r

f= yl/r

Store user ID, salt, f
f = e(tXhn)r = e(t,h)<"Vr = et h)K

* Pairing cryptographically binds user id with password hash
e Can add verifiability (proof that PRF properly applied)

* Key rotation straightforward: Token(K->K’) = K'/K

* Interesting formal security analysis (see paper)

The Pythia PRF Service

Queries are fast despite pairings

e PRFquery: 11.8 ms (LAN) 96 ms (WAN)
Parallelizable password onions

 HC° and PRF query made in parallel (hides latency)
Multi-tenant (theoretically: scales to 100 million login servers)

Easy to deploy
* Open-source reference implementation at
http://pages.cs.wisc.edu/~ace/pythia.html
e At least one startup deploying it commercially
https://virgilsecurity.com/pythia/

FVRGIL

Today’s talk

Pythia: moving beyond “hash & hope”

Harden hashes with off-system secret key using
partially oblivious pseudorandom function protocol

[Everspaugh, Chatterjee, Scott, Juels, R. — USENIX Security 2015]

Typo-tolerant password checking

In-depth study of typos in user-chosen passwords
Show how to allow typos without harming security

[Chatterjee, Athayle, Akawhe, Juels, R. — Oakland 2016]
[Woodage, Chatterjee, Dodis, Juels, R. — Crypto 2017]
[Chatterjee, Woodage, Pnueli, Chowdhury, R. — CCS 2017]

Back to our big picture

®.

((@\ 4\ /

tom, passwordl

People often enter

wrong password:
- Typos
- Memory errors

tom salt; , Gy(salt; , password1l)

alice salt, , Gi(salt, , 123456)

bob salt;, Gy(salt;, p@ssword!)

Login
server

Passwords databases must be protected:
- Server compromise

- Exfiltration attacks (e.g., SQL injection)
Widespread practice:

- Apply hashing w/ salts

- Hope slows down attacks enough

Back to our big picture

\

tom

salt,,

Gy(salt, , password1)

alice

“0 .

salt, ,

Gy(salt, , 123456)

tom, passwordl
(f; W

salt;,

Gy(salt; , p@ssword!)

,O\

- P / . bOb
Login
server

People often enter

wrong password:
- Typos
- Memory errors

Users have hard time remembering (complex) passwords
[Ur et al. 2012] [Shay et al. 2012] [Mazurek et al. 2013] [Shay et al. 2014]

[Bonneau, Schechter 2014]

Passwords can be difficult to enter without error (typo)

[Keith et al. 2007, 2009] [Shay et al. 2012]
Suggestions for error-correcting passphrases

[Bard 2007] [Jakobsson, Akavipat 2012] [Shay et al. 2012]

Back to our big picture
tom salt; , Gy(salt; , password1l)

¥ — tom, passwordl
@\/L alice salt, , Gi(salt, , 123456)

—E bob It. . G.(salt d!
: o) salt, , G, (salt, , p@ssword!
Login 3. Gylsalts, p@)

server

People often enter

wrong password:
- Typos
- Memory errors

Facebook passwords are not case sensitive (update)

If you have characters in your Facebook password, there's a second
password that you can log in to the social network with.

By Emil Protalinski for Friending Facebook | September 13, 2011 -- 12:26 GMT (05:26 PDT) | Topic: Security

passwordl Password1 PASSWORD1

4 N

Typo-tolerant password checking:

Allow registered password or some typos of it
NS %

(1) First study of typo-tolerance & simple constructions to correct
popular errors [Oakland 2016]

(2) New constructions to correct more errors securely, show that
simple approaches are so far the best [Crypto 2017]

(3) Personalized typo-tolerance: have checking system learn over
time typos specific user makes [CCS 2017]

Mechanical Turk transcription study

100,000+ passwords typed by 4,300 workers e, X
P — N

amazon mechanicalturk

4 I
Top 3 account
0, . .
% OF TYPOS Capslock Flip first letter for 20% of typos
11% cas:e _ Y,
4.5% Add
character
at end
4.6%

¢S Lo

A

PREVENTING
LOGIN SINCE

1980

Other 78.8%

Typo-tolerant password checking

Can view as an error-correction problem
Ball is set of all points we check near a submitted string (including it)

Success occurs if true password is in the ball of submitted passsword

Password password1

Easy to define balls by generic

Flip first letter _
corrector functions

Drop last char Jssword1l

Flip all |
Ip all letters Password13

sl size ()

3 20%
64 50%

pASSWORD1 Password12

Balance utility improvement versus performance & security

Relaxed checking via brute-force search

tom, Password1 tom salt; , Gy(salt, , password1l)

alice salt, , Gi(salt, , 123456)

Gw

((JQ\ 4

bob salt;, Gy(salt;, p@ssword!)

Compute ball for each password, check each hash

[To finish checks in time T,
must set Time(G,)=T/b Gy(salt;, Passwordl) ¢

Apply caps lock corrector Gi(salt;, pASSWORD1) ¥
Apply first case flip corrector G(salt,, password1l)

Can set ball to be result of applying
corrector functions for popular typos

Works with existing password hardening schemes
No change in what is stored
Ball size b = 4 gives 20% of typos across all users

Impact of Top 3 typos in real world

) O &

<, Dropbox
Instrumented production login of Dropbox to quantify typos
NOTE: We did not admit login using typo’d passwords

24 hour period:
* 3% of all users failed to login due to one of top 3 typos

* 20% of users who made a typo would have saved at least 1
minute in logging into Dropbox if top 3 typos are corrected.

Allowing typos in password will add several
person-months of login time every day.

Typo-tolerance would significantly improve
usability of password-based login

Can it be secure?

Threat #1: Server compromise

salt; , Gy(salt, , password1l)

salt, , Gi(salt, , 123456)

salt;, Gy(salt;, p@ssword!)

No change to
password DB

If b is small, then can use existing G,
No change in security after compromise

Threat #2: Remote guessing attacks

tom salt; , Gy(salt; , password1l)

alice salt, , Gi(salt, , 123456)

bob salt;, Gy(salt;, p@ssword!)

K%% tom, password
Gy(salt,, password) ¢

Apply caps lock corrector G(salt;, PASSWORD) ¥
Apply first case flip corrector ~ Gy(salt,, Password) ¢
Apply extra char corrector G,(salt,, passwor) X

Threat #2: Remote guessing attacks

tom, password
P tom salt; , Gy(salt, , password1l)

alice salt, , Gi(salt, , 123456)

tom, iloveyou

bob salt;, Gy(salt;, p@ssword!)

Server locks account after q failed attempts (e.g., g=10)

Gy(salt,, iloveyou) ¢
Apply caps lock corrector Gi(salt;, ILOVEYOU) X
Apply first case flip corrector ~ Gy(salt,, lloveyou) ¢
Apply extra char corrector G(salt,, iloveyo) X

Up to 4 passwords checked at cost of 1 query

=>
Attacw 4x

Threat #2: Remote guessing attacks

tom, password
P tom salt, , Gi(salt, , password1)

tom, iloveyou alice salt, , Gi(salt, , 123456)

bob salt;, Gy(salt;, p@ssword!)

Server locks account after q failed attempts (e.g., g=10)
Adversary can get improvements only if many popular passwords
typo to the same string

Each guess increases success
probability by sum of masses
of passwords in ball:

passwor
Password

password

P(password) + P(Password) + P(passwor) + P(PASSWORD)

,) i PASSWORD
Won’t be 4x increase since P(passwor) << P(password)

Attack simulation using password leaks

Adversary knows:
Distribution of passwords, and the set of correctors

Exact checking Typo-tolerant checking

Query most probable g passwords Query g passwords that maximizes success
NP-complete problem.

Compute using greedy approximation

- 4 M Exact checking
X 294 B Typo-tolerant checking
Fy 3 2.75 '
% Top 3 correctors, g = 10
S 2
o
(%)
g 079 99
O
>
’ 1
0

- d
30

Security-sensitive typo tolerance

Don’t check a correction if the resulting
password 1s too popular.

pASSWORD

1\

pPASSWORD Password PASSWORD pASSWOR

Checkers w/ heuristic filtering

Use password leak roclkyou to estimate password distribution
Filter out typos to ensure aggregate ball weight not too large

Success probability (%)

3.5

2.5

N

1.5

=

0.5

Top 3 correctors, g =10

Phpbb

M Exact checking
B Typo-tolerant checking

B Typo-tolerant checking
w/ filtering

0.79 0-9 0.81

myspace

32

-

Typo-tolerance can enhance user experience
without degrading security in practice

-

Relaxed checking (brute-force ball search):

* Works with existing password hardening schemes
* No change in what is stored

* Ball size b =4 gives 20% of typos across all users

/
Outstanding questions:

e Can we increase % of typos correctable?

 What about users with rare typos?
o

New Approach 1:
Popularity-proportional hashing

We can increase ball size for relaxed checking but will have to
decrease run time of G
Decreasing run time by 10

=> 10x speedup in offline attacks

Password
passwordl

Popularity proportional hashing: Password1

Hash time inversely proportional to

strength of password Password13

PASSWORD1 Password12
P(pw) high => hash time longer

P(pw) low => hash time faster

sall e 1)
Aggregate time to check all points in a ball is 3 20%
lower if some low-entropy passwords in ball 64 50%

~ 200 * |pw| 79%

New Approach 2:
Secure-sketch-based checking

Another possible approach: use secure sketches [Dodis, Smith 2005]
Pair of algorithms (SS,Rec):

| ////////’——7
s <- SS(pw) — Store s with G(pw) S word \
pW" <. Rec(pw’,s) / passwordl

Password1l

Prlpw” =pw]>1-6

if pw’” in ball of pw . Password13

PASSWORD1 Password12

To check submission pw’: Ball size (b)
3

If G (pw’) = G (pw) then allow login

’” ’ 20%

pw’’ <- Rec(pw’,s)

If G, (pw”’) = G,(pw) then allow login 64 50%
~200* [pw| 79%

Building suitable secure sketches

Traditional secure sketches (e.g., [Dodis, Smith 2005]) not secure
enough (leak too much about password)

Distribution-sensitive secure sketches can provide better security
e Sketch algorithms designed for particular distribution
e Security only must hold for that distribution

[Fuller, Rezyin, Smith 2016] give construction using “layering”

We provide improved version of their construction,
layer-hiding hash

Best known security, efficiency trade-off

Comparing the approaches

Fix errors corrected & run time of checking. Which offers best security?

Relaxed

checking
For typical password distributions,
relaxed checking is better than PPH

Popularity-

proportional

hashing
Lower-bound security of secure-sketch
approach by PPH

Secure-

sketch PPH always better trade-off than best-

known secure-sketch (layer-hiding hash)

checking

Relaxed checking remains best known approach

Conjecture:
Relaxed checking is best possible approach in this setting

e O
Outstanding questions:

e Can we increase % of typos correctable?

 What about users with rare typos?
- /

Personalized typo-tolerant checking

Another approach: learn typos individual user makes over time

o tom, Password1
&0
N tom salt, , G.(salt,, passwordl
\f:{é\% tom, ihatetypos 1 Gidsalty, p)

tom, passwordl

tom, Password1

Check G(salt, , Passwordl) , see that it is wr
Add to a wait list of recent incorrect submissions
When user correctly logs in:
* Check wait list, apply typo policy (e.g., edit distance 1 of true password)
e Add valid typos from wait list into cache and clear wait list

Check G(salt, , Passwordl) and Gi(salt,, Password1l), allow login if either match

Personalized typo-tolerant checking

Another approach: learn typos individual user makes over time

o tom, Password1
- i
\f\{gii tom, ihatetypos
T

tom, passwordl

tom, Password1

pk passwordl(Sk) Passwordl(Sk)
tom salt;, Gy(salt;, password1l)
Typo salt,, G,(salt,, Password1)
cache
Wait list: | padRmenddrd Haggjipatetypos)

Obviously can’t store wait list in clear, security problem

Encrypt wait list using public key encryption

* Encrypt secret key at registration time using passwordl1
* Encrypt secret key under each typo added to typo cache

Lots more details of design:

Randomizing order of typo cache, cache eviction policies, etc.

Personalized typo-tolerant checking

Another approach: learn typos individual user makes over time

@ tom, Passwordl pk , Epasswordl(Sk) ’ EPasswordl(Sk)
NS IC{
6%\)/\)\%& : tom salt;, Gy(salt;, password1l)
el D tom, ihatetypos
&\:/\
tom, password1 I;’Er?e salt,, Gy(salt,, Password1)
tom, Password1 Wait list:

E «(Passwordl) E (ihatetypos)

Security: we prove that for realistic password/typo distributions, an attacker that
compromises system cannot do better than classic brute-force attack against
Gy(salt, , passwordl)

No security loss by adding typo cache

TypTop: prototype adaptive checker

 Mechanical turk studies showed
personalization can be beneficial

— 45% of users would benefit
* We built a prototype called TypTop.
— Mac OSX and Linux password checking

— Pilot deployment with ~25 users
— Some users get huge benefit from TypTop

* Available at https://typtop.info

Today’s talk

Pythia: moving beyond “hash & hope”

Harden hashes with off-system secret key using
partially oblivious pseudorandom function protocol

[Everspaugh, Chatterjee, Scott, Juels, R. — USENIX Security 2015]

Typo-tolerant password checking

In-depth study of typos in user-chosen passwords
Show how to allow typos without harming security

[Chatterjee, Athayle, Akawhe, Juels, R. — Oakland 2016]
[Woodage, Chatterjee, Dodis, Juels, R. — Crypto 2017]
[Chatterjee, Woodage, Pnueli, Chowdhury, R. — CCS 2017]

